The lab of Michael D. Ward et al now has a blog. The inaugural post describes some of the lab's ongoing projects that may come up in future entries including modeling of protests, insurgencies, and rebellions, event prediction (such as IED explosions), and machine learning techniques.

The second post compares two event data sets--GDELT and ICEWS--using recent political unrest in the Middle East as a focal point (more here):

We looked at protest events in Egypt and Turkey in 2011 and 2012 for both data sets, and we also looked at fighting in Syria over the same period.... What did we learn from these, limited comparisons?  First, we found out first hand what the GDELT community has been saying: the GDELT data are in BETA and currently have a lot of false positives. This is not optimal for a decision making aid such as ICEWS, in which drill-down to the specific events resulting in new predictions is a requirement. Second, no one has a good ground truth for event data — though we have some ideas on this and are working on a study to implement them. Third, geolocation is a boon. GDELT seems especially good a this, even with a lot of false positives.

The visualization, which I worked on as part of the lab, can be found here.  It relies on CartoDB to serve data from GDELT and ICEWS, with some preprocessing done using MySQL and R. The front-end is Javascript using a combination of d3 for timelines and Torque for maps.


GDELT (green) and ICEWS (blue) records of protests in Egypt and Turkey and conflict in Syria

If you have questions about the visualizations or the technology behind them, feel free to mention them here or on the lab blog.