
QCon NY 2016 Recap
Matt Dickenson

Ibotta
June 30, 2016

Themes

🏡 Architecture & Services

👭 Distributed Systems

⚽ Culture & Teams

🤖 Machine Learning

🗣 Hallway Track

• Netflix runs JS clients on 1,000s of device types

• Devices sometimes require API customization

• Different interaction patterns (remote, voice, swipe)

• Device teams uploaded Groovy scripts to the server

• Until one day a memory-intensive script broke stuff

Katharina Probst (@probst_kathrin), Netflix

Server-Side Scripting🏡

• “Does the current system meet the current requirements?”

• Flexibility: A/B testing specific to devices, for example

• Velocity: decoupling deployments of multiple teams

• Resiliency: this was a weak point of uploading scripts

• Developer experience: switched to containers

Server-Side Scripting
Katharina Probst (@probst_kathrin), Netflix

🏡

• When language shifted from “script” to “app” it signaled a
change in usage patterns

• When allowing others to execute code in your
environment, ensure that responsibility correlates with
freedom

• Don’t be afraid to change your system as requirements
change

Katharina Probst (@probst_kathrin), Netflix

Server-Side Scripting🏡

• Costs of Migrating to Service-Oriented Architecture

• Complexity of a distributed system

• Tempting to build around problems rather than fix them

• Polyglot dev team fragments culture, making it hard to
share code and move between teams

Matt Ranney (@mranney), Uber

Thousands of Services🏡

• Performance: easy to believe an operation is fast
because your part is fast

• Fan out

• If something takes 1ms on average but 1s in the 99th
percentile, and you use it 100 times, there’s a 63%
chance you’ll hit the worst case

• Context: often gets propagated across service calls
because no one knows what they can safely remove

Matt Ranney (@mranney), Uber

🏡 Thousands of Services

• Failure testing: adding this retroactively is challenging
both technically and culturally

• Migrations: use a “carrot” and not a “stick”

• Politics: “developers are willing to increase complexity in
exchange for not having hard conversations"

Matt Ranney (@mranney), Uber

🏡 Thousands of Services

• Hedge funds do lots of simulations (data pipeline)

• FIFO work scheduling ignores human idiosyncrasies

• Rolling out an internal system

1. Have a couple users & let them talk to teach other

2. Achieve previous SLA (no improvements!)

3. Do the easiest possible thing to get “wow” factor

4. Do the cool things you wanted to do in the first place

David Greenfield, Two Sigma

Mesos & Containers🏡

• Hedge funds do lots of simulations (data pipeline)

• FIFO work scheduling ignores human idiosyncrasies

• Rolling out an internal system

1. Have a couple users & let them talk to teach other

2. Achieve previous SLA (no improvements!)

3. Do the easiest possible thing to get “wow” factor

4. Do the cool things you wanted to do in the first place

David Greenfield, Two Sigma

Mesos & Containers🏡

Peer-to-peer: majority of participants share the same role

Sean Cribbs (@seancribbs), Comcast

Membership Protocols👭

Sean Cribbs (@seancribbs), Comcast

Membership Protocols👭

• Desirable properties of a membership protocol

• Connectedness (not necessarily direct)

• Balance (no single node can 🔥 the whole cluster)

• Short path length

• Low clustering

• If A sends to B & C, don’t want B to also send to C

• Accuracy: detect failed nodes quickly

Sean Cribbs (@seancribbs), Comcast

Membership Protocols👭

• Several popular options available

• SWIM

• Round-robin approach to failure detection (❤beat)

• If A doesn’t get an ack from B, A asks C and D if they
think B is alive

Sean Cribbs (@seancribbs), Comcast

Membership Protocols👭

• SCAMP

• Partial-view, self-organizing cluster

• Nodes join via a two-stage random walk

• Random walk to another node to use as starting point

• Join message propagates to random # of nodes

Sean Cribbs (@seancribbs), Comcast

Membership Protocols👭

• CYCLON

• On a regular interval, shuffle your view with your oldest
neighbor

• Helps maintain balance

• Sort of like certain versions of poker

Sean Cribbs (@seancribbs), Comcast

Membership Protocols👭

• Dissemination Protocols: “Epidemic Broadcast Trees”

• All nodes start with an eager push

• Broadcast triggers eager push

• Duplicate messages result in pruning: if A and B send the same
message to C and A gets there first, B moves into its "lazy" set

• Over time this results in a spanning tree

• Lazy-push sends "I have a message" notifications. If B's "I have"
message reaches C before A's eager push, a link between C
and B is grafted back into the tree (lazy pushes can be batched)

Sean Cribbs (@seancribbs), Comcast

Membership Protocols👭

• Most systems don’t need weakly consistent membership
(can use DNS)

• Between research paper and implementation there is a
“gulf of despair”

• Cassandra uses Hybrid Partial View

• Riak uses PLuM trees

Caitie McCaffrey (@caitie), Twitter

Verification of DS👭

Caitie McCaffrey (@caitie), Twitter

Verification of DS👭

Caitie McCaffrey (@caitie), Twitter

Verification of DS👭

Caitie McCaffrey (@caitie), Twitter

Verification of DS👭

• Formal Verification

• TLA+

• Coq

• Amazon claims to have used formal verification to find
bugs in S3, Dynamo, and EBS

Caitie McCaffrey (@caitie), Twitter

Verification of DS👭

• Formal Verification

• TLA+

• Coq

• Amazon claims to have used formal verification to find
bugs in S3, Dynamo, and EBS

Caitie McCaffrey (@caitie), Twitter

Verification of DS👭

• Unit Tests (still valuable in a distributed environment!)

• Types != Testing

• “TCP doesn’t care about your type system”

• Integration tests (simple 3-node setup)

• Property-based testing (QuickCheck)

Caitie McCaffrey (@caitie), Twitter

Verification of DS👭

• Fault injection (Netflix)

• Chaos Monkey

• kills instances

• Latency Monkey

• artificial delays

• Chaos Gorilla

• AZ outage

Caitie McCaffrey (@caitie), Twitter

Verification of DS👭

• Game Days

• Amazon

• Stripe

Caitie McCaffrey (@caitie), Twitter

Verification of DS👭

• Game Days

1. Notify team

2. Induce failures

3. Monitor systems

4. Observing team monitors
recovery, files bugs

5. Prioritize bugs & fix

Caitie McCaffrey (@caitie), Twitter

Verification of DS👭

• Verify critical components any way you can!

• Formal verification

• Unit tests

• Integration Tests

• Property Testing

• Fault injection

• Culture == behaviors that are valued

• Can think of culture as your team’s “default settings”

• Buffer’s culture: buffer.com/transparency

• remote work, positivity, self-improvement, clarity,
reflection, gratitude, “live smarter not harder”

Sunil Sadasivan (@sunils34), Buffer

Culture-Focused Startup⚽

http://buffer.com/transparency

• To hire for culture, your team has to know what it is

• “There are no balanced people, only balance teams”

• If you hire for culture fit, you should fire for it too

Sunil Sadasivan (@sunils34), Buffer

Culture-Focused Startup⚽

• Building a diverse applicant pool: A/B testing job postings
(“hacker” was found to be unfriendly)

• References:

• High Output Management by Andy Grove

• Reinventing Organizations by Frederic Laloux

Sunil Sadasivan (@sunils34), Buffer

Culture-Focused Startup⚽

• People, not tools, resolve incidents

• Lots of knowledge in people’s heads about incident
response

• Cognitive fixation: remembering a similar pattern

• Thematic vagabonding: rapid context switching

John Allspaw (@allspaw), Etsy

Incident Response⚽

John Allspaw (@allspaw), Etsy

Incident Response⚽

John Allspaw (@allspaw), Etsy

Incident Response⚽

• Keep talking

• Bias toward peer review

• Read the error message

• Modeling exercise

• bit.ly/AllspawThesis

http://bit.ly/AllspawThesis

• Simplicity-flexibility trade-off

• Approaches to simplification:

• Automation

• GUI

• Code/scripts

Building an AI Cloud🤖
Simon Chan (@simonchannet), PredictionIO

1. Define the goal (what constitutes a “good” prediction?)

2. Decide on the presentation (suggestive vs. decisive)

3. Import free-form data source (“life is more complicated
than MovieLens”)

4. Construct features and labels (data transformation)

5. Set evaluation metrics (online & offline)

Building an AI Cloud🤖
Simon Chan (@simonchannet), PredictionIO

6. Define “real-time” (daily? every 5 min?)

7. Find the right model (the fun part!)

8. Serve predictions (includes adding business logic)

9. Collect feedback for improvement (human learning)

10. Keep monitoring

Building an AI Cloud🤖
Simon Chan (@simonchannet), PredictionIO

• Explore-exploit trade-off

• Optimal stopping problem

• Multi-armed bandits

Vowpal Rabbit🤖
John Langford, MS Research

vs

• Reinforcement learning

• Contextual bandits (regret minimization)

• Example at Skype: choosing which codex to use for a call

• Log as much as you can, because credit assignment
becomes difficult

Vowpal Rabbit🤖
John Langford, MS Research

• Lots of talk about distributed build systems

• “Can we wrap Mongo and Solr in a transaction?”

• “Most of the business logic is still in COBOL but we’re
starting to add some Java.”

🗣 Hallway Track

• Everyone is building distributed systems

• Can learn from systems with architectures
different from ours

• Everything is a trade-off

• Easy to mistake technical decisions for
cultural decisions and vice-versa

🏡 👭 ⚽ 🤖 🗣

