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Goals

« Understand key terms related to classification
« Recognize options for classification algorithms
* Apply classification to real-world problems

Image: http://dilbert.com/strip/2008-05-07
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Motivation: Customer Segmentation

“Given what we know about this
customer, will she buy Tide®?”

Image: http://savewater.com.au
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Background

e Discrete & Continuous
* Predictive & Descriptive
e Jrain & Test

Image: https://xkcd.com/388/
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Decision Iree

Image: http://shapeofdata.wordpress.com
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Decision Iree

* Find a feature with high variance
* Select a cut-off that accurately classifies
* Repeat with subsequent dimensions

Image: http://shapeofdata.wordpress.com
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Support Vector Machine

* Find a line that divides the data points
« Maximize the margin between groups
e Minimize error

Image: http://shapeofdata.wordpress.com
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K-Means

» Labelled centroids
e Classify by closest centroid
* Average new centroids

Image: http://shapeofdata.wordpress.com
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K-Means

Image: http://theoffice.wikia.com
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Random Forest

 Randomly remove features
« (Generate many trees
* Average over them

Image: http://shapeofdata.wordpress.com
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DAVID EPSTEIN

Roberts: [You argue that] if you simply had the height and weight of an Olympic roster,
you could do a pretty good job of guessing what their events are. |s that correct?

Epstein: That's definitely correct. | don't think you would get every person accurately,
but... | think you would get the vast majority of them correctly. And frankly, you could
definitely do it easily if you had them charted on a height-and-weight graph, and | think
you could do it for most positions in something like football as well.

Classitying Olympic Athletes

Image: http://amazon.com
Quote: http://econtalk.org



http://amazon.com
http://econtalk.org

Height (cm)

Height (cm)

220

200

180

160

140

220

200

180

160

140

Weight (kg)

= Male " § _
. Eemlf I?b I 1.
asketbal s B
® Rowing = -'-':-. =
® Weightlifting A "
e Wrestling = " =% g o
u S
u 1 A
n
[l ":l L
n . —
" om [ [ E
= 0 " = & -
2 T
n n N %
A ]
o
3
7. 3N
4 . 2 |
= Male § _
A Female
e 100m
® 400m Hurdles
® 400m Relay
® Marathon - o
o
«
| |
€
o
-~ o
E ®
> T
(]
T
o
38 4
A
A
o
?-_ —
T T T T T T 1
40 60 80 100 120 140 160

m Male
A Female
100m Hurdles

® Hammer Throw
® High Jump
e Javelin n
Y [ I | u n
|
n l. l.lf n "
| n ﬁ u .. I - A I [ B
nA =1 ; mm -r
Y- 2 ngTatugn "o N 1
WLE LY I
A A
TN S
A A A‘% 4
MA AR
ASR M A
A *3 ass
|
A :
A
A
A
= Male
A Female
® Archery -
e Handball - - LI
® Swimming I
e Triathlon me % 1.
T T T T T T T
40 60 80 100 120 140 160

Description

Data: http://theguardian.com

Weight (kg)
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Actual Sport

Archery
Badminton
Basketball
Beach Volleyball
Canoe Slalom
Canoe Sprint
Cycling
Diving
Fencing
Football
Handball
Hockey

Judo

Modern Pentathlon
Rowing
Sailing
Shooting
Swimming
Table Tennis
Tennis
Triathlon
Volleyball
Water Polo
Weightlifting
Wrestling

Train

Actual Sport

Predicted Sport

Test
Archery .

Badminton
Basketball
Beach Volleyball
Canoe Slalom
Canoe Sprint
Cycling
Diving

Fencing .

Football .

Handball .
Hockey .

Judo
Modern Pentathlon

Rowing .

Sailing .
Shooting
Swimming .
Table Tennis
Tennis .
Triathlon
Volleyball |
Water Polo .
Weightlifting .-
Wrestling
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Predicted Sport

Conditional Inference Tree

Training set accuracy: .279

Test set accuracy:

219



Actual Sport
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Predicted Sport

Random Forest

Training set accuracy: .923

Test set accuracy:

244



Actual Sport

Train

Archery
Badminton
Basketball
Beach Volleyball
Canoe Slalom
Canoe Sprint
Cycling
Diving
Fencing
Football
Handball
Hockey

Judo

Modern Pentathlon
Rowing
Sailing
Shooting
Swimming
Table Tennis
Tennis
Triathlon
Volleyball
Water Polo
Weightlifting
Wrestling

Actual Sport

Predicted Sport

Test

Archery
Badminton
Basketball
Beach Volleyball
Canoe Slalom
Canoe Sprint
Cycling
Diving
Fencing
Football
Handball
Hockey

Judo

Modern Pentathlon
Rowing
Sailing
Shooting
Swimming
Table Tennis
Tennis
Triathlon
Volleyball
Water Polo
Weightlifting
Wrestling

Predicted Sport

Neural Network

Training set accuracy: .280

Test set accuracy:

265



e Websites

» shapeofdata.wordpress.com
e datatau.com

e research.facebook.com

 Books
* Probability & Statistics (DeGroot & Schervish)
 Machine Learning: A Probabilistic Perspective (Kevin Murphy)

e Podcasts
« Data Skeptic
 Not So Standard Deviations
e Partially Derivative
e TJalking Machines
 What's the Point?

How to draw an owl

1. Draw some circles 2. Draw the rest of the fucking owl

Resources


http://shapeofdata.wordpress.com
http://datatau.com
http://research.facebook.com

